

MITSUBISHI CARBIDE

Insert Expansion

A new generation of high performance cutters with *MIRACLE* [®] coated inserts.

Multi-functional Indexable Cutter

2005.11. Update B055G

MIRACLE® Coated VP2ORT ideal for stainless steel machining.

OOLS NEWS

MIRACLE[®] Coated VP15TF&VP20RT

A wide selection of corner radii

Multi-functional Indexable Cutter

РХЗПГ

Features

Low cutting resistance inserts

- Advanced simulation technology has been utilised to develop the inserts.
- Efficient machining on low rigidity machines and workpieces is now possible and is ideal for thin wall or extended reach applications.

Ideal heat disposal and chip control

- Heat generated during cutting has been reduced due to the APX's special geometry.
- Ideal chip shape formed by the insert for easy disposal.

<Cutting conditions> Workpiece : JIS SCM440 Tool : APX3000R254SA25SA Insert : AOMT123608PEER-M Grade : VP15TF Cutting speed : 150m/min

Feed per tooth : 0.15mm/tooth Width of cut : 6mm Depth of cut : 6mm

Effective deep hole machining

An offset, long shank type to prevent workpiece interference is available for difficult to reach deep applications.

⁽Standard shank type)

<Cutting conditions> Workpiece : JIS SCM440 Tool : APX3000R254SA25SA Insert : AOMT123608PEER-M Grade : VP15TF Cutting speed : 160m/min Feed per tooth : 0.2mm/tooth Width of cut : 6mm Depth of cut : 9mm Single insert

Long life insert grade

MIRACLE coated **VP15TF** has a good balance of wear and fracture resistance. MIRACLE coated **VP2ORT** exhibits excellent performance for stainless steel machining. Both grades are suitable for a variety of workpiece materials.

Hardened Steel Cast Iron	Carbon Steel Alloy Steel	Stainless Steel
VP15TF		
	VP20R	T

A wide selection of corner radii

9 sizes from R0.2 to R3.2 available. Suitable for a wide range of machining applications.

Geometry Corner R

R0.2 R0.4 R0.8 R1.0 R1.2 R1.6 R2.0 R3.0 R3.2

High rigidity cutter bodies

- Rigidity has been increased by using a larger amount of backing metal behind the insert.
- Resistance to corrosion and abrasion on the cutter bodies made possible by using a superior

high heat resistant alloy and a special surface treatment.

Cutting Performance

Wall Surface Accuracy The unique insert geometry allows a consistent and accurate vertical wall to be produced. <Cutting conditions> JIS SCM440 Workpiece : APX3000R253SA25SA AOMT123608PEER-M VP15TF Cutting speed : 160m/min

Wear Resistance

: 0.15mm/tooth

2mm

: 6mm

Tool

Insert Grade

Feed per tooth

Width of cut

Depth of cut

Fracture Resistance

Effective Multi-functional Machining

The APX3000 is highly effective in various 3-D machining operations, including steep ramping angle capabilities.

Multi-functional Indexable Cutter

Shank Type

Light Alloy	Cast Iron	General Steel	Stainless Steel	Hardened Steel

[ype	Order Number	Stock	er of Teeth		Dimensi	ons (mm)	Max. Ramping Angle		<u>J</u>		Type (Fig.)
		R	Numb	D1	D4	L1	L2	α°	Clamp Screw	Wrench	Anti-seize Lubricant	
	APX3000 R121SA16SA	•	1	12	16	85	25	6	TPS25	TIP07F	MK1KS	1
	141SA16SA	•	1	14	16	85	25	6	TPS25	TIP07F	MK1KS	1
	162SA16SA	•	2	16	16	85	25	15	TPS25	TIP07F	MK1KS	2
	182SA16SA	•	2	18	16	85	25	11	TPS25	TIP07F	MK1KS	3
	202SA20SA	•	2	20	20	100	30	9	TPS25	TIP07F	MK1KS	2
	203SA20SA	•	3	20	20	100	30	9	TPS25	TIP07F	MK1KS	2
	223SA20SA	•	3	22	20	115	30	7	TPS25-1	TIP07F	MK1KS	3
	252SA25SA	•	2	25	25	115	35	6	TPS25-1	TIP07F	MK1KS	2
	253SA25SA	•	3	25	25	115	35	6	TPS25-1	TIP07F	MK1KS	2
dard	254SA25SA	•	4	25	25	115	35	6	TPS25-1	TIP07F	MK1KS	2
Stan	284SA25SA	•	4	28	25	115	35	4	TPS25-1	TIP07F	MK1KS	3
•••	304SA32SA	•	4	30	32	125	45	4	TPS25-1	TIP07F	MK1KS	2
	323SA32SA	•	3	32	32	125	45	3	TPS25-1	TIP07F	MK1KS	2
	324SA32SA	•	4	32	32	125	45	3	TPS25-1	TIP07F	MK1KS	2
	325SA32SA	•	5	32	32	125	45	3	TPS25-1	TIP07F	MK1KS	2
	403SA32SA	•	3	40	32	125	45	2	TPS25-1	TIP07F	MK1KS	3
	405SA32SA	•	5	40	32	125	45	2	TPS25-1	TIP07F	MK1KS	3
	406SA32SA	•	6	40	32	125	45	2	TPS25-1	TIP07F	MK1KS	3
	507SA32SA	•	7	50	32	125	45	1	TPS25-1	TIP07F	MK1KS	3
	638SA32SA	•	8	63	32	125	45	1	TPS25-1	TIP07F	MK1KS	3
	APX3000 R182SA16LA	•	2	18	16	120	25	11	TPS25	TIP07F	MK1KS	3
	222SA20LA	•	2	22	20	150	30	7	TPS25-1	TIP07F	MK1KS	3
bu	282SA25LA	•	2	28	25	170	35	4	TPS25-1	TIP07F	MK1KS	3
Lo	283SA25LA	•	3	28	25	170	35	4	TPS25-1	TIP07F	MK1KS	3
	352SA32LA	•	2	35	32	190	45	3	TPS25-1	TIP07F	MK1KS	3
	353SA32LA	•	3	35	32	190	45	3	TPS25-1	TIP07F	MK1KS	3

Note) When using inserts with corner radius Re≥2.0, machining of the holder is required as shown on page 4.

MITSUBISHI

Arbor Type

Light alloy	Cast iron	Ge	enera	al steel	Stain	lless s	teel H	ardene	d steel										
Order Number									ax. Ramping Angle		ß			ype (Fig.)					
		R	Ē	D1	L1	L7	L8	D8	W 1	D9	D11	D12	(kg)	l ≥ α°	Clamp Screw	Wrench	Clamping Bolt	Anti-seize Lubricant	
APX3000-0	32A05RA	•	5	32	40	18	5.6	M8	8.4	16	-	30	0.2	3	TPS25-1	TIP07F	①LS24H	MK1KS	1
-0	40A06RA	•	6	40	40	18	5.6	9	8.4	16	14	34	0.3	2	TPS25-1	TIP07F	@HSC08030H	MK1KS	2
-0	50A07RA	•	7	50	40	20	6.3	11	10.4	22	17	45	0.4	2	TPS25-1	TIP07F	2HSC10030H	MK1KS	2
-0	63A08RA	•	8	63	40	20	6.3	11	10.4	22	17	55	0.7	1	TPS25-1	TIP07F	2HSC10030H	MK1KS	2
R	08009CA	•	9	80	50	26	6	13	9.5	25.4	20	70	1.3	1	TPS25-1	TIP07F	2HSC12035H	MK1KS	2
R1	10011DA	•	11	100	63	32	8	17	12.7	31.75	26	80	2.2	0.5	TPS25-1	TIP07F	2HSC16040H	MK1KS	2

Note) When using inserts $Re \ge 2.0$, machining of the holder is needed as shown below.

Insert

		(Coate	ed	1	Dimen	sions	(mm)		
Shape	Order Number		VP20RT		L1	L2	S1	F1	Re	Geometry
	AOMT123602PEER-M	•	•		12	6.6	3.6	1.8	0.2	
	123604PEER-M	•	•	12 6.6 3.6 1.6 0.4						
	123608PEER-M	$ \bullet $	•		12	6.6	3.6	1.2	0.8	<u>⊢ L1</u> \
	123610PEER-M	$ \bullet $	• NEW	1	12	6.6	3.6	1.0	1.0	
-1-D	123612PEER-M	\bullet	•		12	6.6	3.6	0.8	1.2	
	123616PEER-M	\bullet			12	6.6	3.6	0.4	1.6	Re S1
	123620PEER-M	\bullet	NEV		12	6.6	3.6	0.4	2.0	
NEW	123630PEER-M	$ \bullet $	•		12	6.6	3.6	0.4	3.0	
NEW	123632PEER-M	\bullet	•		12	6.6	3.6	0.4	3.2	

Note on use of inserts with large corner radii

When using inserts with corner radius $Re \ge 2.0$, please machine the holder with a radius form as shown on the right.

R = Re - 0.5mm

R : Holder end radius Re : Insert corner radius

APX3000

Recommended Cutting Conditions

Cutting Conditions for Shoulder Milling

						¢12	-16	¢18	- 25	φ 28 ·	-100
	Workpiece	Hardness	Insert	Width of Cut	Cutting Speed	Depth of Cut	Feed per Tooth	Depth of Cut	Feed per Tooth	Depth of Cut	Feed per Tooth
			Grade	ae (mm)	VC (m/min)	ap (mm)	fz (mm/tooth)	ap (mm)	fz	ap (mm)	tz (mm/tooth)
_				((((((((((((((((((((((((((((((((((((((((11//11/11)	(1111)	0.15	(1111)	0.25	(1111)	0.20
Ρ					230	4 - 7	0.10	5 - 7	0.25	5 - 7	0.20
				-0.25D1	(180-270)			7 - 8.5	0.15	7 - 8.5	0.10
					. ,			8.5-10	0.10	8.5-10	0.07
	Mild Steel	< 190UP				- 2	0.15	- 3	0.25	- 3	0.20
	Wind Oteen		VIIJII	-0.5D1	220	2 - 5	0.10	3 - 5.5	0.20	3 - 5.5	0.15
				0.021	(170 - 260)			5.5-8	0.15	5.5 - 8	0.10
					180	- 1	0.10	$\frac{8 - 10}{- 4}$	0.10	$\frac{8 - 10}{-3}$	0.07
				-0.75D1	(140 - 210)	+	0.10	4 -10	0.10	3 - 7	0.07
					(110 210)	- 4	0.15	- 5	0.25	- 5	0.20
				0.2504	180	4 - 7	0.10	5 — 7	0.20	5 — 7	0.15
				-0.25D1	(140–210)			7 — 8.5	0.15	7 — 8.5	0.10
								8.5-10	0.10	8.5-10	0.07
	Alloy Steel 180-350HE	180-350HB	VP15TF		170	- 2	0.15	- 3	0.25	-3	0.20
	Alloy Steel			-0.5D1	(130 - 200)	2 = 5	0.10	3 - 5.5	0.20	3 - 5.5	0.15
					(150 200)			8 -10	0.10	8 -10	0.07
			0.750	140	- 4	0.10	- 4	0.15	- 3	0.10	
				-0.75D1	(110-160)		/	4 -10	0.10	3 - 7	0.07
м						- 4	0.15	- 5	0.20	- 5	0.20
				-0.25D1	180	4 - 7	0.10	5 - 7	0.15	5 - 7	0.15
					(140-210)			7 - 8.5	0.10	7 - 8.5	0.10
						- 2	0.15	-3	0.07	-3	0.07
	Stainless Steel ≤270HB	VP20RT		170	2 - 5	0.10	3 - 5.5	0.15	3 - 5.5	0.15	
				-0.5D1	(130-200)			5.5-8	0.10	5.5-8	0.10
							/	8 -10	0.07	8 -10	0.07
				-0.75D1	140 (110-160)	- 4	0.10	- 4	0.10	- 3	0.10
					(110-160)	- 1	0.15	4 - 10	0.07	3 - 7	0.07
Κ					180 (140—210)	-4 4-7	0.15	$\frac{-5}{5-7}$	0.25	5 - 7	0.20
				-0.25D1			0.10	7 - 8.5	0.15	7 - 8.5	0.10
		Tanalla			,			8.5-10	0.10	8.5-10	0.07
	Cast Iron	Strength	VP15TF			- 2	0.15	- 3	0.25	- 3	0.20
		≤350MPa		-0.5D1	170	2 - 5	0.10	3 - 5.5	0.20	3 - 5.5	0.15
		_			(130 - 200)			5.5 - 8	0.15	5.5 - 8	0.10
					140	- 4	0.10	- 4	0.10	- 3	0.07
				-0.75D1	(110-160)			4 - 10	0.10	3 - 7	0.07
						- 4	0.10	- 5	0.20	- 5	0.20
				-0.25D1	130	4 - 7	0.07	5 - 7	0.15	5 - 7	0.15
				0.2021	(100-150)			7 - 8.5	0.10	7 - 8.5	0.10
		Tensile				- 2	0.10	8.5-10	0.07	8.5-10	0.07
	Ductile Cast Iron	Strength	VP15TF		120	$\frac{-2}{2-5}$	0.10	$\frac{-5}{3-55}$	0.20	$\frac{-5}{3-55}$	0.20
	≤800MPa		-0.5D1	(90-140)		0.01	5.5-8	0.10	5.5-8	0.10	
				• • • •			8 -10	0.07	8 -10	0.07	
			-0.75D1	100	- 4	0.07	- 4	0.10	- 3	0.10	
				0.1001	(80-120)		0.10	4 - 10	0.07	3 - 7	0.07
Н				-0.2504	90	-4	0.10	-5	0.15	-5	0.15
	Hardened Steel 40-55HRC		-0.2501	(70-100)	4 - 1	0.01	7 - 85	0.07	5 - 1	0.10	
		40-55HRC	VP15TF	0.55	85	- 2	0.10	- 3	0.15	- 3	0.15
				-0.5D1	(60-100)	2 - 5	0.07	3 - 5.5	0.10	/	
				-0.75D1	70 (50— 80)	- 4	0.07	- 4	0.07	- 3	0.07

(Note 1) These cutting conditions are a guide to the standard shank type and the arbor type.

Please make adjustments according to the machining conditions.

(Note 2) Vibration is liable to occur in certain cases. Please reduce the depth of cut and / or reduce cutting conditions in the following cases. When using the long shank type

 \cdot When using long tool overhang with the standard or arbor type

· When the application has poor clamping rigidity or when using a low rigidity machine.

(Note 3) In case of coarse and fine pitch cutters, the coarse pitch type is recommended to prevent vibration.

Cutting Conditions for Slot Milling

Γ						¢12	-16	¢18	-25	φ28	-100
	Workpiece	Hardness	Insert Grade	Width of Cut ae (mm)	Cutting Speed vc (m/min)	Depth of Cut ap (mm)	Feed per Tooth fz (mm/tooth)	Depth of Cut ap (mm)	Feed per Tooth fz (mm/tooth)	Depth of Cut ap (mm)	Feed per Tooth fz (mm/tooth)
Ρ	Mild Steel	≤180HB	VP15TF	D1	180 (140-210)	-3	0.10	-4 4 - 7	0.10 0.07	- 3 3 - 5	0.10 0.07
	Carbon Steel Alloy Steel	180-350HB	VP15TF	D1	140 (110-160)	-3	0.10	-4 4 - 7	0.10 0.07	- 3 3 - 5	0.10 0.07
M	Stainless Steel	≤270HB	VP20RT	D1	140 (110-160)	-3	0.10	-4 4 - 7	0.10	- 3 3 - 5	0.10 0.07
K	Cast Iron	Tensile Strength ≤350MPa	VP15TF	D1	140 (110-160)	-3	0.10	-4 4 - 7	0.10 0.07	- 3 3 - 5	0.10 0.07
	Ductile Cast Iron	Tensile Strength ≤800MPa	VP15TF	D1	100 (80-120)	-3	0.07	-4 4 - 7	0.10 0.07	-3 3 - 5	0.10 0.07
Η	Hardened Steel	40-55HRC	VP15TF	D1	70 (50-80)	-3	0.07	- 4	0.07	- 3	0.07

(Note 1) These cutting conditions are a guide to the standard shank type and the arbor type.

Please make adjustments according to the machining conditions.

(Note 2) Vibration is liable to occur in certain cases. Please reduce the depth of cut and / or reduce cutting conditions in the following cases.

Helical Cutting

· When using the long shank type

 \cdot When using long tool overhang with the standard or arbor type

· When the application has poor clamping rigidity or when using a low rigidity machine.

(Note 3) In case of coarse and fine pitch cutters, the coarse pitch type is recommended to prevent vibration.

Ramping/Helical Cutting

Ramping

Refer to the table below for cutting conditions. For feed per tooth and cutting speed, follow the cutting conditions for slot milling.

Outtine Educ	Ram	ping	H	elical Cutting (Blin	Helical Cutting (Through Hole)			
Diameter Diameter D1 (mm)	Maximum Ramping Angle & (°)	Minimum Distance ¹⁾ L (mm)	Maximum Hole Diameter ²⁾ DH max. (mm)	Maximum Pitch P max. (mm)	Minimum Hole Diameter DH min. (mm)	Maximum Pitch P max. (mm)	Minimum Hole Diameter DH min. (mm)	Maximum Pitch P max. (mm)
12	6	95	22	2.5	20.5	2	14	0.5
14	6	95	26	2.5	24.5	2	18	1
16	15	37	30	9	28	7	21	2
18	11	51	34	5	32	4.5	25	2
20	9	63	38	5	36	4.5	29	2
22	7	81	42	5	40	4.5	33	2
25	6	95	48	6	46	5	39	3
28	4	143	54	4.5	52	4	45	2
30	4	143	58	4.5	56	4	49	2
32	3	190	62	4.5	60	4	53	2
35	3	190	68	4	66	3.5	59	2
40	2	286	78	4	76	3.5	69	2
50	1	572	98	2	96	2	89	2
63	1	572	124	2	122	2	115	2
80	1	572	158	2	156	2	149	2
100	0.5	1145	198	1	196	1	189	1

Note) (1) L (=10/tan α). Cutters' moving distance until depth of cut reaches 10mm at a maximum ramping angle.
(2) In case nose radius of 0.8mm. Other nose that, find with the below formula.

{(cutting edge diameter D1) - (nose radius) - 0.2)} x 2

(3) When machining highly ductile materials with ramping angles above, chips could be continuous.

┤║║║║

Application Examples

	Tool	APX3000R162SA16SA	APX3000R405SA32SA	APX3000R254SA25SA
	Insert (Grade)	AOMT123616PEER-M(VP15TF)	AOMT123608PEER-M(VP15TF)	AOMT123608PEER-M(VP15TF)
	Workpiece	JIS S45C	JIS FC200	JIS SKD61 (HRC45)
st	Cutting Speed(m/min)	150	150	150
ting	Feed per Tooth (mm/tooth)	0.05	0.15	0.12
ond	Depth of Cut (mm)	1.5	5	3
Ö	Width of Cut (mm)	1.5	30	10-25
	Coolant	Wet	Dry	Dry
	Machine Shank Type	M/C-BT30	M/C-BT50	M/C-BT50
	Result	Lower cutting noise and double tool life compared to a competitor's products.	Reduced cutting noise, better surface finish and double the tool life compared to the competitor's product.	Better cutting performance and lower cutting resistance compared to the competitor's product.

	Tool	APX3000R203SA20SA	APX3000R325SA32SA	APX3000R162SA16SA
	Insert (Grade)	AOMT123608PEER-M(VP20RT)	AOMT123608PEER-M(VP20RT)	AOMT123608PEER-M(VP20RT)
Workpiece		JIS SUS304	JIS SUS304	JIS SUS304
م Cutting Speed(m/min)		160	130	160
itior	Feed per Tooth (mm/tooth)	0.1	0.2	0.11
ond	Depth of Cut (mm)	3.2	0.25	2.6
0	Width of Cut (mm)	5.1	28	14
Coolant Machine Shank Type Result		Wet	Wet	Dry
		M/C-BT40	M/C-BT50	M/C-BT40
		Better chip discharge and lower cutting noise compared to competitor's products.	Lower cutting resistance enabled stable machining even at 6 times higher cutting conditions. 12 times longer tool life.	Lower cutting resistance prevented burr formation and reduced work piece stress.

Please note that the machining performed in the application examples is dependent on the rigidity of the machine used and the rigidity of the workpiece and clamping.

Operational Guidance

Use only specified inserts and parts.

Clamp the inserts at a specified torque of (1.0N/m) only.

For Your Safety

Don't touch inserts and chips without gloves.
 Please machine within the recommended application range, and exchange expired tools with new ones in advance of breakage.
 Please use safety cover and wear safety glasses.
 When using compounded cutting oils, please take fire preventions.
 When attaching inserts or spare parts, please use the attached wrench or spanner.
 When using rotating tools, please make a trial run to check run-out, vibration and abnormal sounds etc.

★MITSUBISHI MATERIALS CORPORATION

MITSUBISHI MATERIALS CORPORATION

Marketing Dept.

KFC bldg., 7F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015, Japan 17401, Eastman Street, Irvine, California, 92614, USA TEL +81-3-5819-8772 FAX +81-3-5819-8774

MMC HARTMETALL GmbH

Comeniusstr.2, 40670, Meerbusch GERMANY TEL +49-2159-9189-0 FAX +49-2159-918966

MITSUBISHI MATERIALS U.S.A. CORPORATION Headquarters

TEL +1-949-862-5100 FAX +1-949-862-5180

MMC METAL SINGAPORE PTE LTD.

10, Arumugam Road, #04-00 Lion Industrial Bldg.,409957, SINGAPORE TEL +65-6743-9370 FAX +65-6749-1469

JSA

Mitsubishi Carbide Home page : http://www.mitsubishicarbide.com

(Tools specifications subject to change without notice.)